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1. INTRODUCTION

Consider a linear system of algebraic equations Ax = b, where 4 = (q;;)
is an (n + 1) X n real matrix, b = (b;) an (n + 1)-component real vector
and x = (x;) an n-component real vector. Clearly, the system is overdeter-
mined if b is not in the range of A4 and it is this problem to which we seek
a “best” approximate solution. The technique employed is to impose an
abstract norm on R"t! and then find x € R* such that the error vector
n(x) = b — Ax is minimized with respect to this norm. We refer to this
question of finding such a solution with respect to a given abstract norm as
“Problem (P).” When we use the standard /*-norm, we let £, = (£,7) denote
an [P-solution to Ax = b, i.e.,

I (€N, = min [ 9,

(The least-squares solution and the Tchebychev solution correspond to the
values p = 2 and p = o0, respectively.)

A set of vectors in R™ is said to satisfy the Haar condition if every set of m
of them is linearly independent. Let # denote the set of all (n 4 1) X n
matrices whose rows satisfy the Haar condition. In this paper, we concern
ourselves with the problem of finding the /?-solution to Ax = b when A4 € .
In Section 2, we give an explicit formula for the /?-solution and also discuss
how it may be expressed as a convex combination of the solutions to the
n X nsubsystems. In Section 3, we allow b to be a random vector and demon-
strate how one may favor a particular norm when observing a minimum
variance criterion. Two examples of such stochastic overdetermined systems
are given. Finally, some preliminary results pertaining to the matrix 4
are presented in the Appendix.
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AN OVERDETERMINED LINEAR SYSTEM 265
2. ExpLiciT FORMS OF THE /P-SOLUTION

Let A be an (n + 1) X n matrix of rank n and AT the transpose of 4.
Then Ax = b has the unique /2-solution

£ = (ATA) ATh.

Moreover, the [2-error vector is s = n(§y) = (I — A(ATA)™* AT) b (see [1]).
The dual norm || - ||~ of a norm || - || on R™*! is defined by

]~ = max (u, v),
where

n+l

(u,v) = Z U,
i=1

is the standard Euclidean inner product on R*+!. Furthermore, # is called
a dual vector to u € R* if (#, u) = ||u ||~ and || || = 1. From [4] we have
the following

THEOREM (Sreedharan). Let A4 be an (n -+ 1) X n matrix of rank n
and s = n(§;) = b — AE, the IP-error vector. If s = 0, then &, is a solution
of Problem (P). If s 5= 0, then

Ax = b — (b, 9)]|slI7) § 2.0

has a solution, and any solution of (2.1) is a solution of Problem (P).

From this point we shall only consider the case where R"*! is equipped
with the /P-norm. Thus, the /%-norm is the dual norm if (1/p) + (1/¢9) = 1.
For 1 < p < oo, the dual vector of a nonzero vector s = (s5,) is §, = (§;%),
where

§2 =( s |/llsll)rtsgns;, i=12,...,n+ 1. 2.2)

For p=1, we define p={r,rn,.rg={rt<r<n+1 and
| s,] = max|s;| = slo} and §(r) = (§'(r)), where

§Hr) = sgns, if i=r,
=0 if i+#r.

Then any convex combination of §,(r) with rep is a dual vector of s for
p=1L1
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Clearly

t
lim §, = (1/8) 3. $i(r) (2.3)
o =1
is also a dual vector of s for p = 1.
With the given /P-norm and s = 0, we may now write (2.1) as Ax = b'?)
where

b = (b = b — (5, I 515, @9

and §, is given by (2.2) for 1 < p <C oo, while any convex combination of
§1(r) with r € p can define §; . It is shown in [1, 2] that Ax = b‘®’ has a unique
solution for each p, 1 < p <C co. Furthermore, each is a respective /?-solution
to Ax = b. The /?-solution to Ax = b is unique when 1 < p < oo since
the /P-norm is strictly convex. From [2] we have that the /'-solution is unique
if and only if p is a singleton set (¢ = 1), and the I*-soution is unique if
and only if the rows of A satisfy the Haar condition. If Ax = b'P has a
unique solution, then it can be found by solving ATAx = AT5‘"). Hence the
I?-solution can be obtained from

&, = (ATA) ATH™», 2.5)

Let A* be the n X n matrix obtained from A by deleting the kth row,
D, = det(A4%), the determinant of A%,

n+tl
4= ) | Dy
x=1
and
n+1
o= )Y (=1)*1h.D,.
k=1

Now A4 € s# implies that there exists a nonsingular » X # matrix P with
[ det(P)] = 1 such that AP = G where

& 0 0
0 - cee 0
6=1{: : :
0 0 gy
hy hy - B,

with g; #0 and h; 54 0, i = 1,2,..., n. Let G* be the matrix G with the
kth row deleted. Then for &k =1, 2,...,n -+ 1

A*P = G*
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and
D, = det(G¥) = D, det(P).

Consider the (n + 1) X (n + 1) matrix formed by extending 4 in the
following way:

(ai) = (41 9),

where 8§ = ((—1D"+-*D,) is an (n + 1)-component column vector. Define
m;; == (cofactor of oy)/d,fori = 1,...,n,j = 1,..., n + 1, or more explicitly,

4 v @i G T Gy (=D" D,
=D e, @ 3,61 G141 @y (=142 D;,
1” — e “se ]
4, 11,1 A1 Aistgn Gian  (—=1)"7 Dy
i1 " Qniti-1 Gyl °77 Aayan (=1 Dy iy
(2.6)

THEOREM 2.1. Let A€ .

(1) Ifo = 0,then Ax = bis solvable and has the unique solution x = Mb
where M = (m;;) is defined by (2.6).
@) If o #0, then an IP-solution to Ax =b is &, = B,b, where
B, = (Bi(p)) is defined by
n+1
( l)D:zZ( l)k1m1k|Dk|’ 1<p<00

lI k

EUDs s (i, p=1,

kea

Up+Up=1 A={, b, [} ={1<I<n+1 ad |D| =
max | D; |}, and my; is given by (2.6). The I'-solution given here has the property
that lim,,,,+ £, = &, hence &, is continuous with respect to p for 1 < p < .
Furthermore, &, is the unique [P-solution for 1 << p < oo while the I'-solution
is unique if and only if X is a singleton set (v = 1).

Bip) = my; +

Zmi;‘+

Proof. Since s = (I — A(ATA)* AT) b, Theorem A.l (cf. Appendix)
implies that

= (o/d)(—1y¥1D,, i=12..n+]1. .7

(i) A e implies that rank (4) = n and thus A4 is one-to-one. Now b
is in the range of A if and only if s = 0 which, in turn, is equivalent to ¢ = 0.

640/18/3-6
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Hence Ax = b is uniquely solvable in this case and it has the solution
x = (ATA)"* ATb = Mb.

(i) For o # 0, we see from (2.7) that s; is proportional to D;, so p
and A represent the same set. Furthermore,

(b, 5) = 0¥/d,. (2.8)

From (2.2), (2.3), (2.7), (2.8), and (2.4) we obtain

, —1y | D
b;m:b"»#.diq(_lD_}j’—I—’ 1 <p< oo (2.9a)
b;-l) = b]» + (0(—1)j/TDj), jE )\a

Theorem A.2 (cf. Appendix) and (2.5) yield
n+1

£&" = Z ’niib;w, i=1,2..,m I<p<oo;
j=1

hence

n+1

&7 =Y Bul(p)b;, i=12.,n, I<p<oo,
=

via (2.9) and the definition of 0. We see that 5", 8,,( p), and thus &, are
continuous with respect to p for 1 < p < oo when § is defined by (2.3).

COROLLARY 2.1. Let Ae#, o +0,and |D;| =c, i =1,2,...,n+1,
for some c. Then &, is independent of p for | << p < .
Proof. This follows immediately from the definition of 8;;( p).

Let us now consider the #» X n subsystem of equations
A*ZE = p* (2.10)
fork =1, 2,...,n -+ 1, where b* is the vector b with the kth element deleted.
Then (2.10) has a unique solution Z* since A* is nonsingular (D; = 0) by
the Haar condition. We would like to establish a relation between the
I7-solution £, and the Z*’s, Foreach k = 1,2,...,n + 1, the n X n system

GFW*H — b* @.11)

also has a unique solution W* = (w;*) since | Dy | = | D, | # 0.
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We note that

rgs - 0 0 0 - 0~
O < gl 0 0 0
Gb=10 - 0 O

gk'+1 0
0 0 0 0 - g,
th Mg e hpy hy

Hence the first » — 1 equations of the system (2.11) yield
wt =bjg;, for ik (2.12a)

By Cramer’s rule and through expanding the determinant in the numerator
about the kth column, we obtain

Y (~piby (25 = Ly (capomep,. 21020)

ik 4 Dygx i

Lemma 2.1. (i) If o = O then (GTG) 1 G*b = W = (b,/g)).
(i) If o # O then

..

n+1
(GTG)L G™h'» = (1/4,) Z | Dy |t WE, I <p< oo,
k=1
=y wh p=1,
keA

where b'P, X\ and T were defined in Theorem 2.1.

Proof. Let (GTG)! GT = (y;;). From the proof of Theorem A.l we
have,fori = 1,2,..,n,j=1,2,..,n+ 1,

Yi; = D 2 (A gl)v I: .9
J ( éz k )/ 2 J
= (—1)"1 D;D;/(4,g,), i#J.

() It follows from (2.13) and Lemma A.l that ¢ = 0 implies

(2.1

n+1

Z yijb]' = bl/gl > i= ]5 29"-, n.

i=1
(ii) From (2.9a), we have

n+1 n+1

Z Y‘iibgm):: (I/Aa) Z 1 Dk Iq Cik > i= 1,2,...,’1, 1 <p < @,
k=1

j=1
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where

n+1

Cir = Z Visb; + (o(—1)* v/ Dy).
j=1

From (2.13), the above equation yields

1 . .
Cix = E—Ic_gk— Z (_l)k-H_l b?'DJ' ’ = k,

J#k

Hence ¢;;; = w;* (cf. (2.12)). This completes the proof for the case 1 < p < oo,
while the result for p = 1 follows by letting p — 1.

THEOREM 2.2. Let A€ ¥ and, for each k = 1,2,....n -+ 1, let Z* be the
unique solution of A*Z* = b*.

(i) If o =0, then Ax = b is solvable and it has the unique solution
x=2Zkk=1,2,..,n+4 1 (all the Z¥s being equal).

() Ifo + 0, then

n+1

fp = (I/Aq) z [ Dy |2 ZF (2.14)

k=1

is the unique IP-solution to Ax = b for 1 < p < co. If A and T are defined
as in Theorem 2.1, then

&L=/ ) ZF (2.15)

keA

is an I'-solution to Ax = b which is unique if and only if A is a singleton set
(r = 1). Furthermore, the 1P-solution provided here is continuous with respect
topforl <p < o0,

Proof. Since A* is nonsingular, it follows from A*P = G*, (2.10), and
(2.11) that

ZF = PWs,  k=1,2,.,n+ 1. (2.16)

(i) From (2.12), o = 0 implies w,* = b,/g;, i = 1, 2,..., n, which is
independent of k. Hence W* = W = (b,/g;), k = 1,2,..,n+ 1, and
Zk = PW* = PW, k = 1,2,..,n + 1. From Theorem 2.1, Ax =& is
uniquely solvable with solution x = (4TA4)~! ATh. Therefore (A.1) and
Lemma 2.1 show that x = PW = ZF,
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(ii) From (2.5) and (A.1) we have
&, = P(GTGY™ GTH'», 2.17)
Hence (2.14) and (2.15) follow from (2.17), Lemma 2.1, and (2.16).

Remark. Theorem 2.2 demonstrates how an /?:solution of an over-
determined system with 4 € 5# may be expressed as a convex combination
of the solutions of the n X n subsystems.

3. A STOCHASTIC OVERDETERMINED SYSTEM

Consider an overdetermined system Ax = b, where 4 € 5 is a constant
matrix but now b = (b;) is a random vector. Let E(-), V(:), and Cov(-, *)
denote the expected value, variance, and covariance operators, respectively.
We assume V(b,) << oo fori = 1, 2,...,n + 1. From:'Theorem 2.1 we have

n+1
éip = z Bw(p) b]‘ H i = 1;---, n, 1 <P < 0, (31)
j=1
and hence
n+1
E(fip) = Z Bu(p) E(bﬂ)a i= 19'"9 n,l <P < . (3'2)
j=2

We note that E(£,) is the [P-solution to Ax = E(b). We call E({;) our
“preferred approximate solution” to the stochastic overdetermined system
if $ is selected according to the minimum variance condition

w(p) = min «(p),
where

o) =Y, V€D

is the trace of the covariance matrix. Note that «(p) is invariant under ortho-
gonal transformations and is equal to the sum of the eigenvalues. Then,
in a sense, it measures the total spread of the random variables. If | D, | = ¢
fori =1, 2,..., n -+ 1 then by Corollary 2.1 «(p) is independent of p and thus
any value of p, 1 <{ p < oo will suffice for 4. Applying the variance operator
to (3.1), we obtain

n+1

V(D) = Z B?j(l’) V(b)) + 2 Z Bi(P) Bix(p) Cov(b; , by).

i=1 i<k
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Therefore
o(p) = z v, z Bip) +2 3 Covt, bk)z Bi(p) Bu(p).  (3.3)

We note that «(p) is continuous for 1 << p < o and differentiable for
1 <p < oo,

Without loss of generality, we then assume that | ay; | > | a5 | for the
case n = 1. Here

_ _ an sy
= mm) = (e Y g
| ajy |
j = > 1 < ’
Pu(p) a1 ayy 174 [ ay 19 ST =12
=+ (=)"2a,,  p=1, o
and from (3.2) and (3.3)
E®b E(b
[ay |2 ‘511)+[ Ay [T —— (2)
EE) fan ¥ a0 PSS
= E(b)/ay , p=1,
K
v = , 1 <
(P) (lay 24 1 ay |97 P
= V(bl)/afl > p=1,

where

q
Ky =|an 22 V(b) + | an |22 V(by) + 2 ‘—“‘—“‘! Gl | Cov(b, , by).
a1as

If V(b)) =0 and V(b)) # 0 we choose p = 1, while if V(b) # 0 and
V(b)) =0 we choose p = co. For V(b)) %0 and V(b)) # 0 we find
limg .+ (dv/dp) = lim,,,(dv/dp) = 0. Furthermore, dv/dp =0 at p = p,,
where

p0:17 9___0’
= 0, 0: 19 (3'4)

=142 In(l ay; /] a |)

—Tnl 0 , otherwise,
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with
g = | @y [[V(by) — (am/ay) Cov(by , by)]
| @y |[V(b) — (aui/as) Cov(b, , by)]~

Now p, > 1if and only if § > 1, in which case

o(p) = V) V() — Coviby b))
o =B V(b,) + a2, V(b,) — 2a,,a, Cov(b, , b)

If 6 > 1, we choose p such that «( ) = min{e(1), »(p,), »(0)}; otherwise,
we choose p such that «( p) = min{u(1), v(c0)}. If, in addition, b, and b,
are uncorrelated, then 6 = (| ay, | V(by)/(| ax | V(by)) and we find explicitly
that

p= o0 0< il

- In (| g l/] @ D)
~—1+—*—ln—|0*‘|—— 6 >1.

We now present two examples, the solutions of which were obtained
utilizing a computer. »(p) was calculated according to (3.3), thus deciding p.
The corresponding graph was also provided. Note that any type of distri-
bution with V(b)) < oo for i = 1,2,..., n 4 1 and yielding the same first
two moments would produce the same choice of .

EXAMPLE 1. A = (2) and the joint distribution of b is

1
NG
2 | 3%
6 1 11

Hence E(b)) = 4, E(by) = 2.5, V(b)) = 4, V(by) = 3.75, Cov(b,, b,) = 1.
Here 6 > 1 and therefore (3.4) yields p, = 1.5881. Since «(1) = 1,
+(py) = 0.9333 and »(cc) = 1.0833, we choose p = 1.5881. Hence our
preferred approximate solution is

E (f 1.5881) = 2-0666,

v (p}

1.0833
] R, V

0.933

L] 1.5881
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ExampLE 2.

05 1 05
-3 -9 —6
4 12 6

2565 35

A=

and the joint distribution of b is b, = 0,

b3=4 b3::6

blg 1 5 z& 1 5
2 l 1/8 1/4 2 l /16 1/16
6 | 178 0 6 | 18 1/4

Thus
E(b,) =4, E(by) =325 E(by) =S5, E(by) =0,
Vib) =4, V(by) = 39375, V(b)) =1, V(b)) =0,

Cov(b; , b)) = —0.5, Cov(b,, by) =1, Cov(b,, bs) = 0.25,

Cov(b, , b,) = Cov(b,, b,) = Cov(b;, b)) = 0.

Here $ = 1.3610,

—2.8273
E(§1.3610) = 3.6896 s

—4.6631
' v (p)
5.1354 M
43034 1

++
1 1.3610
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APPENDIX: SOME RESULTS ON MATRICES

As a consequence of the Binet—-Cauchy theorem [3], we have

LemMAa A.l. If A is an (n + 1) X n matrix, then det(4"4) = 4,. We
note that for Ac ¥, 4, # 0.

THEOREM A.l. If A€ #, then

I — A(ATA) AT

D,? ~D,D, e (=D D\D,,,
_ 1 —D,D, D,? (=D DyDyy
~ 7, z : :
(—=D" DpaDy (— 1)”+1 Dyyy Dy - (— 1)2n D3|+1
8T
= A—2 .

Proof. Since AP = G, it follows that

(ATA) AT = P(GTG)™ G7 (A.1)
and

A(ATA) AT = G(GTG)™* GT. (A2)
From the definition of G*, we see that

Dy = (=1)**h, 1T & k=12,..,n,

i#k
:ng3 k:n+1
=1

Since D; = D, det(P) and |det(P)] =1, we have D,D; = D,D; for
Lj=12,..,n+ 1. From Lemma A.l,

n+1 n+1l

det(ATA) = Y D2 =Y D2=Y h2[] g2+ [] e
k=1 k=1 =1 i=1

i#k

Since

g’ + h? hyhy hih,
GG = h2‘hl &’ + h? - hz-hn

3

By hahy v g+ b
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we have
(GG =
s A2
— +1 8i
(1;1 g ) zl;[1
1
—_— —h,h 2
Az 1172 i;le;[.l g
—hahy [1 &2
L i#n,1
Hence
G(GTG)Y1 GT =
s Z Dkz
k#£1
2| by
4, .

(— 1)"+1.Dn+1D1 (“1)n+2bn+1D2 (‘1)"+3bn+1D3

LEVITAN AND LYNN

2 —hyhy n g

i#1,2

(Zh—’cz+1)ﬂgi2

r=2 8% %2

-hnhz H gi2

i%n,2
D1D2 _D1D3
2 D

k#2

DD,

< (=MD Dy |

(" 1)n+2D2Dn+1

Y D¢

ksn+1 y

The result now follows in view of Lemma A.1 and (A.2).

LeMma A2. If A€# and M, and M, are both n X r matrices then
AM, = AM, implies that M, = M, .

THEOREM A.2. If A€, then (ATA)y AT = M = (my), where my; is
defined in (2.6).

Proof. By Lemma A.2, this theorem is proved if AM = A(ATA)1 AT,

The entry of AM at the /th row and the jth column is

where! = 1,...,n+ 1,j=1,..,n+ 1.

ay @y Ain (=" D,
—jt2
i1 Qi1 Gjy,n (=172 D,
a1 a2 i 0 s
-1
Ajr11 Qi1 G (1" Dy
Api11 At (429K 1 (=1)°D,,,
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If | = j, the determinant expanded about the last column yields

Z a;my; = (1/4,) Z D2,

i=1 i3]
If I == j, the same expansion yields zero for each entry except the /th one,
for which we have

Y, aumi; = ((—1)"744,) D.D; .

i=1

Therefore, we see that matrix AM is precisely G(GTG)! GT = A(ATA)1 AT
as constructed in Theorem A.l.
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