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1. INTRODUCTION

Consider a linear system of algebraic equations Ax = b, where A = (aij)
is an (n + 1) X n real matrix, b = (bi ) an (n + I)-component real vector
and x = (Xi) an n-component real vector. Clearly, the system is overdeter
mined if b is not in the range of A and it is this problem to which we seek
a "best" approximate solution. The technique employed is to impose an
abstract norm on Rn+1 and then find x E Rn such that the error vector
7J(x) = b - Ax is minimized with respect to this norm. We refer to this
question of finding such a solution with respect to a given abstract norm as
"Problem (P)." When we use the standard [P-norm, we let gp = (g/) denote
an [p-solution to Ax = b, i.e.,

(The least-squares solution and the Tchebychev solution correspond to the
values p = 2 and p = 00, respectively.)

A set of vectors in Rm is said to satisfy the Haar condition if every set of m
of them is linearly independent. Let .Ye denote the set of all (n + 1) X n
matrices whose rows satisfy the Haar condition. In this paper, we concern
ourselves with the problem of finding the [p-solution to Ax = b when A E .Ye.
In Section 2, we give an explicit formula for the [p-solution and also discuss
how it may be expressed as a convex combination of the solutions to the
n X n subsystems. In Section 3, we allow b to be a random vector and demon
strate how one may favor a particular norm when observing a minimum
variance criterion. Two examples of such stochastic overdetermined systems
are given. Finally, some preliminary results pertaining to the matrix A
are presented in the Appendix.
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2. EXPLICIT FORMS OF THE lp-SOLUTION

265

Let A be an (n + 1) x n matrix of rank n and AT the transpose of A.
Then Ax = b has the unique 12-s01ution

Moreover, the f2-error vector is s = 'Y](g2) = (I - A(ATA)-l AT) b (see [1]).
The dual norm II '11- of a norm II '11 on Rn+1 is defined by

II u 11- = max (u, v),
Ilvll=1

where

n+1

(u, v) = L UiVi
i~l

is the standard Euclidean inner product on Rn+1• Furthermore, u is called
a dual vector to u E Rn+1 if (u, u) = II u 11- and II u II = 1. From [4] we have
the following

THEOREM (Sreedharan). Let A be an (n + 1) x n matrix of rank n
and s = 'Y](g2) = b - Ag2 the 12-error vector. If s = 0, then g2 is a solution
of Problem (P). If s oF 0, then

Ax = b - «b, s)/II s In s (2.1)

has a solution, and any solution of(2.1) is a solution of Problem (P).

From this point we shall only consider the case where RnH is equipped
with the lp-norm. Thus, the lq-norm is the dual norm if (l!p) + (l/q) = 1.
For 1 < p ~ 00, the dual vector of a nonzero vector s = (Si) is s1' = ($/),
where

i = 1, 2, ... , n + 1. (2.2)

For p = 1, we define p = {r1 , r2 ,... , rt} = {r: 1 ~ r ~ n + and
I Sr I = max I Si I = II s Iloo} and $l(r) = (sl(r)), where

i

sl(r) = sgn Sr

=0

if i = r,

if i oF r.

Then any convex combination of sl(r) with rEp is a dual vector of s for
p=1.
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Clearly
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(2.3)

is also a dual vector of s for p = 1.
With the given [p-norm and s =1= 0, we may now write (2.1) as Ax = b(p)

where

(2.4)

and sp is given by (2.2) for I < p ,s;; 00, while any convex combination of
sl(r) with rEp can defines1 • It is shown in [I, 2] that Ax = b(p) has a unique
solution for eachp, 1 ,s;; p ,s;; 00. Furthermore, each is a respective [p-solution
to Ax = b. The [p-solution to Ax = b is unique when 1 < P < 00 since
the [p-norm is strictly convex. From [2] we have that the [I-solution is unique
if and only if p is a singleton set (t = I), and the ["'-soution is unique if
and only if the rows of A satisfy the Haar condition. If Ax = b{p) has a
unique solution, then it can be found by solving ATAx = ATb(p). Hence the
[p-solution can be obtained from

(2.5)

Let Ak be the n X n matrix obtained from A by deleting the kth row,
Dk - det(Ak), the determinant of Ak,

'HI

Llq - L: [D k Iq
k~1

and
n+l

a - L: (-1 )k-l bkDk .
k~1

Now A E:Yt' implies that there exists a nonsingular n X n matrix P with
I det(P)J = 1 such that AP = G where

with gi =1= 0 and hi =1= 0, i = 1,2, , n. Let Gk be the matrix G with the
kth row deleted. Then for k = 1,2, , n + 1
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1 < p :(; 00,

Consider the (n + 1) x (n + 1) matrix formed by extending A in the
following way:

where 0 = ((-I)n+1- iD i ) is an (n + I)-component column vector. Define
mij = (cofactor of OI.ji)/.1 2for i = 1,... , n,j = 1,... , n + 1, or more explicitly,

an a1,i-1 a1,i+l a1n (_1)n D1

mij=
(-I)i+j aj-1,1 aj-l,i-1 aj-l,i+l aj-l,n (_1)n-1+2 Dj_1

.1 2 a1+l,l aj+l,i-1 a1+l,i+1 aj+l,n (_1)n-j Dj+l

an+l,l an+l,i-l an+l,i+1 an+l,n (-1)0 Dn+l
(2.6)

THEOREM 2.1. Let A E.Ye.

(i) Ifa = 0, then Ax = b is solvable and has the unique solution x = Mb
where M = (mij) is defined by (2.6).

(ii) If a =1= 0, then an Ip-solution to Ax = b is gp = Bpb, where
Bp = (f3ij(P» is defined by

f3i;(P) = mij + (- ~i Dj nf (-I)k-l mik i:k Iq ,
q k~1 k

= mij + (-I)j Dj L (_ t)k-1 mik ,
T "EA D k

p = 1,

(lIp) + (llq) = 1, A = {II' 12 ,,,,, IT} = {I: 1 :(; I :(; n + I and I Dz I =
m~x I Di I}, and mij is given by (2.6). The II_solution given here has the property
th~t limp~1+ gP = g1 , hence gpis continuous with respect to p for 1 :(; p :(; 00.

Furthermore, gp is the unique IP-solution for 1 < p :(; 00 while the II_solution
is unique ifand only if Ais a singleton set (T = 1).

Proof Since s = (I - A(ATA)-1 AT) b, Theorem A.I (cf. Appendix)
implies that

i = 1,2,... , n + 1. (2.7)

(i) A E:!It implies that rank (A) = n and thus A is one-to-one. Now b
is in the range of A if and only if s = 0 which, in turn, is equivalent to a = O.
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Hence Ax = b is uniquely solvable in this case and it has the soh.tl:ion
x = (ATA)-l ATb = Mb.

(ii) For a =1= 0, we see from (2.7) that Si is proportional to D i , so p
and ,.\ represent the same set. Furthermore,

From (2.2), (2.3), (2.7), (2.8), and (2.4) we obtain

b?) = hj + (a(-lyjTDj ),

= b j

Theorem A.2 (cf. Appendix) and (2.5) yield

I <p:(; 00;

(2.8)

(2.9a)

(2.9b)

hence

n+l

~/' = I Inijbjp),
j~l

n+1

~l = I fJij(P) bj ,

j~l

i = 1,2,... , n;

i= 1,2,... ,n,

l::;;;p::;;;oo;

I :(; p :(; 00,

via (2.9) and the definition of a. We see that bjPl, fJilp), and thus ~p are
continuous with respect to p for I :(; p :(; 00 when $1 is defined by (2.3).

COROLLARY 2.1. Let A E yt>, a oF 0, and I D i I = c, i = 1,2,..., n + I,
for some c. Then gp is independent ofp for I :(; p :(; 00.

Proof This follows immediately from the definition of fJii(P).

Let us now consider the n X n subsystem of equations

(2.10)

for k = 1,2,... , n + 1, where bk is the vector b with the kth element deleted.
Then (2.10) has a unique solution Zk since Ak is nonsingular (Dk oF 0) by
the Haar condition. We would like to establish a relation between the
[p-solution gp and the Zk'S. For each k = 1,2,... , n + I, the n x n system

(2.11)

also has a unique solution Wk = (Wik) since I Dk I = I Dk I oF o.
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We note that

r gl 0 0 0 0

0 gk-l 0 0 0
G'" = 0 0 0 gk+1 0

0 0 0 0 gn
hI hk- 1 hk hk+l hnJ

Hence the first n - 1 equations of the system (2.11) yield

Wik = bdgi for i =1= k.
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(2.l2a)

By Cramer's rule and through expanding the determinant in the numerator
about the kth column, we obtain

LEMMA 2.1. (i) If a = 0 then (GTG)-1 GTb = W:== (bdgi)'

(ii) If a =1= 0 then

n+l
(GTG)-l GTb IP ) = (I/Ll q) 2: I Dk IQ Wk,

k~l

= (I/T) L WI.,
kEA

1 <p ~ 00,

p = I,

where bl p), Aand T were defined in Theorem 2.1.

Proof Let (GTG)-l GT = (Yu). From the proof of Theorem A.1 we
have, for i = 1,2,... , n,) = 1,2,.. " n + I,

(i) It follows from (2.13) and Lemma A.l that a = 0 implies

(2.13)

n+l
L yub; = bi/gi ,
;=1

(ii) From (2.9a), we have

n+l n+l
L Yijb~p) = (I/Ll q) L I Dk IQ elk,

;=1 k~l

i = 1,2,... , n.

i = 1,2,... , n, 1 < P ~ 00,
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n+l

Cne = L: yijbj + (a(-I)k YikIDk)'
j~l

From (2.13), the above equation yields

Cik =_1_ L: (-I)k+j-l bjDj ,
Dkgk #k

= bdgi,

i = k,

i =Ie k.

Hence Cik = w/' (cf. (2.12)). This completes the prooffor the case I <p :::;: 00,

while the result for p = 1 follows by letting p -+ 1+.

THEOREM 2.2. Let A E.#' and, for each k = I, 2,... , n + I, let Zk be the
unique solution of AkZk = bk.

(i) If a = 0, then Ax = b is solvable and it has the unique solution
x = Zk, k = 1,2,..., n + 1 (all the Zk'S being equal).

(ii) Ifa =Ie 0, then

n+l

gp = (lILl q ) L: I Dk Iq Zk
k=l

(2.14)

is the unique lp-solution to Ax = b for I < p :::;: 00. If .\ and T are defined
as in Theorem 2.1, then

gl = (lIT) L: Zk
kEA

(2.15)

is an [I-solution to Ax = b which is unique if and only if .\ is a singleton set
(T = 1). Furthermore, the IP-solution provided here is continuous with respect
to p for I :::;: p :::;: 00.

Proof Since Ak is nonsingular, it follows from Akp = Gk, (2.10), and
(2.11) that

k = I,2, ... ,n + 1. (2.16)

(i) From (2.12), a = 0 implies w/' = bdgi' i = 1,2, , n, which is
independent of k. Hence Wk = W:== (bdgi)' k = 1,2, , n + 1, and
Zk = PWk = PW, k = 1,2,... , n + 1. From Theorem 2.1, Ax ~ b is
uniquely solvable with solution x = (ATA)-l ATb. Therefore (A. 1) and
Lemma 2.1 show that x = PW = Zk.
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(ii) From (2.5) and (A.1) we have
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(2.17)gp = P(GTG)-l GTb(pl.

Hence (2.14) and (2.15) follow from (2.17), Lemma 2.1, and (2.16).

Remark. Theorem 2.2 demonstrates how an [p~solution of an over
determined system with A E.Ye may be expressed as a convex combination
of the solutions of the n x n subsystems.

3. A STOCHASTIC OVERDETERMINED SYSTEM

Consider an overdetermined system Ax = b, where A E.Ye is a constant
matrix but now b = (bi ) is a random vector. Let E(·), V('), and Cov(', .)
denote the expected value, variance, and covariance operators, respectively.
We assume V(b i ) < 00 for i = 1,2,... , n + 1. From Theorem 2.1 we have

and hence

n+l

g/ = L fJ;;(p) b j ,
j~l

n+l

E(g/) = L fJij(P) E(bj),
j~2

i = 1,... , n, 1 ~ p ~ 00,

i = 1,... , n, 1 ~ p ~ 00.

(3.1)

(3.2)

We note that E(gp) is the [p-solution to Ax = E(b). We call E(gp) our
"preferred approximate solution" to the stochastic overdetermined system
if p is selected according to the minimum variance condition

v(p) = min v(p),
J,,;;p,,,oo

where
n

v(p) = L V(g/)
i~l

is the trace of the covariance matrix. Note that v(p) is invariant under ortho
gonal transformations and is equal to the sum of the eigenvalues. Then,
in a sense, it measures the total spread of the random variables. If I D i I = c
for i = 1,2,..., n + 1 then by Corollary 2.1 v(p) is independent ofp and thus
any value of p, 1 ~ p ~ 00 will suffice for p. Applying the variance operator
to (3.1), we obtain

n+l

V(g/) = L fJ~;(p) V(bj) + 2 L fJi;(P) fJik(P) Cov(b j , bk)·
j~l j<k
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Therefore
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n+1 n n

v(p) = L: V(bj) L: f3~j(p) + 2 L: Cov(bj , bk) L f3;;Cp) f3;k(P)· (3.3)
j~l ;=1 j<k ;=1

We note that v(p) is continuous for 1 :s;; p :s;; 00 and differentiable for
1 <p < 00.

Without loss of generality, we then assume that Iall I > I a21 I for the
case n = 1. Here

f3
I ail Iq

lip) = ail(l all Iq + I a21 !q) ,

= (1 + (-1)1+1
)/2a11 '

1 < p :s;; 00,

p = 1,
j = 1,2,

and from (3.2) and (3.3)

[a lq E(b1) + I a [q E(b2)
11 a 21 a

E(gp) = I a
1
:

1
1q+ I a

21
Iq 21

= E(b1)lau ,

) K1
v(p = (I au Iq + I a21 Iq)2 '

= V(b1)la~1 ,

where

1 < p :s;; 00,

p = 1,

1 < p :s;; 00,

p = 1,

If V(b1) = 0 and V(b2) =1= 0 we choose p = 1, while if V(bJ =1= 0 and
V(b2) = 0 we choose p = 00. For V(bJ =1= 0 and V(b2) =1= 0 we find
limjJ+1+ (dvldp) = limp+oo(dvldp) = O. Furthermore, dvldp = 0 at p = Po ,
where

Po = 1,

= 00,

_ 1 + 1n(1 all III 021 [)
- In I B I '

B= 0,

B = 1,

otherwise,

(3.4)
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with

fJ _ 1011 I[V(b2) - (021/a 11) Cov(b1 , b2)]

- I a 21 1[V(b1) - (a11/a21) Cov(b1 ,b2)] •

Now Po ?: 1 if and only if fJ ?: 1, in which case
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( ) _ V(b1) V(b2) - Cov(b1 , b2)

v Po - ail V(b2) + a~lV(b1) - 2a110 21 Cov(b1 ' b2) •

If fJ ;;;: 1, we choose p such that v(p) = min{v(I), v(po), v( oo)}; otherwise,
we choose p such that v(p) = min{v(l), v(oo)}. If, in addition, b1 and b2

are uncorrelated, then fJ = ([ all I V(b2))/(1 021 I V(b1)) and we find explicitly
that

p=oo O<fJ~1

= 1 + In (I all 1/1 a 21 I) fJ 1
In I fJ I > .

We now present two examples, the solutions of which were obtained
utilizing a computer. v(p) was calculated according to (3.3), thus deciding p.
The corresponding graph was also provided. Note that any type of distri
bution with V(bi ) < 00 for i = 1, 2,... , n + 1 and yielding the same first
two moments would produce the same choice of p.

EXAMPLE 1. A = (i) and the joint distribution of b is

hk 5

2 i!
6 t t

Hence E(b1) = 4, E(b2) = 2.5, V(b1) = 4, V(b2) = 3.75, Cov(b1 , b2) = 1.
Here fJ > 1 and therefore (3.4) yields Po = 1.5881. Since v(l) = 1,
v(po) = 0.9333 and v( (0) = 1.0833, we choose p = 1.5881. Hence our
preferred approximate solution is

E(~1.5881) = 2.0666,

v (pI

1.0833+---_...;:------= _

b.9333 ---------~---

1.5881
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EXAMPLE 2.
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(

0.5 1
-3 -9

A = 4 12
2.5 . 6.5

0.5 )-6
6

3.5

and the joint distribution of b is b4 = 0,

Thus

ba = 4

~ 5

2 1/8 1/4
6 1/8 0

ba = 6

~ 5

2 1/16 1/16
6 1/8 1/4

E(b1) = 4, E(b2) = 3.25, E(ba) = 5, E(bJ = 0,

V(b1) = 4, V(b2) = 3.9375, V(ba) = 1, V(b4) = 0,

Cov(b1 , b2) = -0.5, Cov(b1 , ba) = 1, Cov(b2 , ba) = 0.25,

Cov(b1 ,b4) = Cov(b2 ,b4) = Cov(ba ,b4) = O.

Here p = 1.3610,

(

-2.8273)
E(t1.3610) = 3.6896,

-4.6631

5.1354

4.3031 +--~.-

I 1.36'0
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APPENDIX: SOME RESULTS ON MATRICES

As a consequence of the Binet-Cauchy theorem [3], we have
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LEMMA A.I. If A is an (n + 1) X n matrix, then det(ATA) = .d2 • We
note that for A E:Yt, Ll 2 =F O.

THEOREM A.I. If A E:Yt, then

Proof Since AP = G, it follows that

and

From the definition of Gk, we see that

(A.l)

(A.2)

b k = (_l)n-k hk f1 gi ,
i"ek

k = 1,2,... , n,

k=n+I.

Since b k = Dk det(P) and I det(P)I = 1, we have DiDj = bibj for
i, j = 1, 2,..., n + 1. From Lemma A.1,

n+l n+l n n

det(ATA) = L Dk2= L b k
2

= L hk
2 f1gi 2 + TIgi2

•

k~l k~l k~l i",k i~l

Since

h1h
n

)h2hn

gn2 ~ hn2 '
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we have

(GTG)-1 =

r (L hk
: + 1) TI gl

k,01 gn ;,01
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-h1h2 TI gl
;,01.2

-h1hn TI gl
;,oI.n

1
J;

Hence

-h1h2 TI g;2
;#.1

-hnh1 TI gl
;,on.l

-hnh2 TI g;2
;,on.2

-h2hn TI gl
;,o2.n

1
J;

The result now follows in view of Lemma A.l and (A.2).

LEMMA A.2. If A E YE and M1 and M2 are both n X r matrices then
AMI = AM2implies that M1 = M 2.

THEOREM A.2. If A EYE, then (ATA)-1 AT = M = (m;j), where m;j is
defined in (2.6).

Proof By Lemma A.2, this theorem is proved if AM = A(ATA)-1 AT.
The entry of AM at the Ith row and the jth column is

an a12 ain (_1)n D1

n 1 aj-I.l aj-I.2 aj-I.n (_1)n-H2 D j- 1
L aUm;j = T at.l at.2 al,n 0
i~I 2

aHI.l aHI.2 aHI.n (_1)n-l DH1

an+I. I an+I.2 an+I.n (_1)0 D n+1

where 1= 1,..., n + l,j = 1,... , n + 1.
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If I = j, the determinant expanded about the last column yields

n

L ajimij = (I/L1 2) L D i 2.

i=l i~j
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If 1 =1= j, the same expansion yields zero for each entry except the lth one,
for which we have

n

L aUmij = «-1)t+i-1/L1 2) D!D j .

i~l

Therefore, we see that matrix AM is precisely G(GTG)-l GT = A(ATA)-l AT
as constructed in Theorem A.I.
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